Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1892): 20220357, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37899021

RESUMO

Artificial light at night (ALAN) threatens natural ecosystems globally. While ALAN research is increasing, little is known about how ALAN affects plants and interactions with other organisms. We explored the effects of ALAN on plant defence and plant-insect interactions using barley (Hordeum vulgare) and the English grain aphid (Sitobion avenae). Plants were exposed to 'full' or 'part' nights of 15-20 lux ALAN, or no ALAN 'control' nights, to test the effects of ALAN on plant growth and defence. Although plant growth was only minimally affected by ALAN, aphid colony growth and aphid maturation were reduced significantly by ALAN treatments. Importantly, we found strong differences between full-night and part-night ALAN treatments. Contrary to our expectations, part ALAN had stronger negative effects on aphid colony growth than full ALAN. Defence-associated gene expression was affected in some cases by ALAN, but also positively correlated with aphid colony size, suggesting that the effects of ALAN on plant defences are indirect, and regulated via direct disruption of aphid colonies rather than via ALAN-induced upregulation of defences. Mitigating ecological side effects of ALAN is a complex problem, as reducing exposure to ALAN increased its negative impact on insect herbivores. This article is part of the theme issue 'Light pollution in complex ecological systems'.


Assuntos
Afídeos , Animais , Poluição Luminosa , Ecossistema , Plantas , Herbivoria , Luz
2.
Plant Direct ; 7(9): e531, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37705693

RESUMO

Infection of Arabidopsis with avirulent Pseudomonas syringae and exposure to nitrogen dioxide (NO2) both trigger hypersensitive cell death (HCD) that is characterized by the emission of bright blue-green (BG) autofluorescence under UV illumination. The aim of our current work was to identify the BG fluorescent molecules and scrutinize their biosynthesis, localization, and functions during the HCD. Compared with wild-type (WT) plants, the phenylpropanoid-deficient mutant fah1 developed normal HCD except for the absence of BG fluorescence. Ultrahigh resolution metabolomics combined with mass difference network analysis revealed that WT but not fah1 plants rapidly accumulate dehydrodimers of sinapic acid, sinapoylmalate, 5-hydroxyferulic acid, and 5-hydroxyferuloylmalate during the HCD. FAH1-dependent BG fluorescence appeared exclusively within dying cells of the upper epidermis as detected by microscopy. Saponification released dehydrodimers from cell wall polymers of WT but not fah1 plants. Collectively, our data suggest that HCD induction leads to the formation of free BG fluorescent dehydrodimers from monomeric sinapates and 5-hydroxyferulates. The formed dehydrodimers move from upper epidermis cells into the apoplast where they esterify cell wall polymers. Possible functions of phenylpropanoid dehydrodimers are discussed.

3.
Tree Physiol ; 43(10): 1855-1869, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37418159

RESUMO

Metabolomics studies are becoming increasingly common for understanding how plant metabolism responds to changes in environmental conditions, genetic manipulations and treatments. Despite the recent advances in metabolomics workflow, the sample preparation process still limits the high-throughput analysis in large-scale studies. Here, we present a highly flexible robotic system that integrates liquid handling, sonication, centrifugation, solvent evaporation and sample transfer processed in 96-well plates to automatize the metabolite extraction from leaf samples. We transferred an established manual extraction protocol performed to a robotic system, and with this, we show the optimization steps required to improve reproducibility and obtain comparable results in terms of extraction efficiency and accuracy. We then tested the robotic system to analyze the metabolomes of wild-type and four transgenic silver birch (Betula pendula Roth) lines under unstressed conditions. Birch trees were engineered to overexpress the poplar (Populus × canescens) isoprene synthase and to emit various amounts of isoprene. By fitting the different isoprene emission capacities of the transgenic trees with their leaf metabolomes, we observed an isoprene-dependent upregulation of some flavonoids and other secondary metabolites as well as carbohydrates, amino acid and lipid metabolites. By contrast, the disaccharide sucrose was found to be strongly negatively correlated to isoprene emission. The presented study illustrates the power of integrating robotics to increase the sample throughput, reduce human errors and labor time, and to ensure a fully controlled, monitored and standardized sample preparation procedure. Due to its modular and flexible structure, the robotic system can be easily adapted to other extraction protocols for the analysis of various tissues or plant species to achieve high-throughput metabolomics in plant research.


Assuntos
Betula , Populus , Humanos , Betula/genética , Betula/metabolismo , Reprodutibilidade dos Testes , Metabolômica , Hemiterpenos/metabolismo , Butadienos/metabolismo , Folhas de Planta/fisiologia , Árvores/metabolismo , Populus/metabolismo , Pentanos/metabolismo
4.
Metabolomics ; 19(7): 62, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37351733

RESUMO

INTRODUCTION: Assessing intraspecific variation in plant volatile organic compounds (VOCs) involves pitfalls that may bias biological interpretation, particularly when several laboratories collaborate on joint projects. Comparative, inter-laboratory ring trials can inform on the reproducibility of such analyses. OBJECTIVES: In a ring trial involving five laboratories, we investigated the reproducibility of VOC collections with polydimethylsiloxane (PDMS) and analyses by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). As model plant we used Tanacetum vulgare, which shows a remarkable diversity in terpenoids, forming so-called chemotypes. We performed our ring-trial with two chemotypes to examine the sources of technical variation in plant VOC measurements during pre-analytical, analytical, and post-analytical steps. METHODS: Monoclonal root cuttings were generated in one laboratory and distributed to five laboratories, in which plants were grown under laboratory-specific conditions. VOCs were collected on PDMS tubes from all plants before and after a jasmonic acid (JA) treatment. Thereafter, each laboratory (donors) sent a subset of tubes to four of the other laboratories (recipients), which performed TD-GC-MS with their own established procedures. RESULTS: Chemotype-specific differences in VOC profiles were detected but with an overall high variation both across donor and recipient laboratories. JA-induced changes in VOC profiles were not reproducible. Laboratory-specific growth conditions led to phenotypic variation that affected the resulting VOC profiles. CONCLUSION: Our ring trial shows that despite large efforts to standardise each VOC measurement step, the outcomes differed both qualitatively and quantitatively. Our results reveal sources of variation in plant VOC research and may help to avoid systematic errors in similar experiments.


Assuntos
Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Reprodutibilidade dos Testes , Metabolômica , Terpenos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Plantas
5.
J Exp Bot ; 74(10): 3033-3046, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-36905226

RESUMO

Defense responses in plants are based on complex biochemical processes. Systemic acquired resistance (SAR) helps to fight infections by (hemi-)biotrophic pathogens. One important signaling molecule in SAR is pipecolic acid (Pip), accumulation of which is dependent on the aminotransferase ALD1 in Arabidopsis. While exogenous Pip primes defense responses in the monocotyledonous cereal crop barley (Hordeum vulgare), it is currently unclear if endogenous Pip plays a role in disease resistance in monocots. Here, we generated barley ald1 mutants using CRISPR/Cas9, and assessed their capacity to mount SAR. Endogenous Pip levels were reduced after infection of the ald1 mutant, and this altered systemic defense against the fungus Blumeria graminis f. sp. hordei. Furthermore, Hvald1 plants did not emit nonanal, one of the key volatile compounds that are normally emitted by barley plants after the activation of SAR. This resulted in the inability of neighboring plants to perceive and/or respond to airborne cues and prepare for an upcoming infection, although HvALD1 was not required in the receiver plants to mediate the response. Our results highlight the crucial role of endogenous HvALD1 and Pip for SAR, and associate Pip, in particular together with nonanal, with plant-to-plant defense propagation in the monocot crop barley.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hordeum , Hordeum/genética , Hordeum/microbiologia , Imunidade Vegetal/genética , Doenças das Plantas/microbiologia
6.
Plants (Basel) ; 12(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36679046

RESUMO

Isoprene-emitting plants are better protected against thermal and oxidative stresses, which is a desirable trait in a climate-changing (drier and warmer) world. Here we compared the ecophysiological performances of transgenic isoprene-emitting and wild-type non-emitting tobacco plants during water stress and after re-watering in actual environmental conditions (400 ppm of CO2 and 28 °C of average daily temperature) and in a future climate scenario (600 ppm of CO2 and 32 °C of average daily temperature). Furthermore, we intended to complement the present knowledge on the mechanisms involved in isoprene-induced resistance to water deficit stress by examining the proteome of transgenic isoprene-emitting and wild-type non-emitting tobacco plants during water stress and after re-watering in actual climate. Isoprene emitters maintained higher photosynthesis and electron transport rates under moderate stress in future climate conditions. However, physiological resistance to water stress in the isoprene-emitting plants was not as marked as expected in actual climate conditions, perhaps because the stress developed rapidly. In actual climate, isoprene emission capacity affected the tobacco proteomic profile, in particular by upregulating proteins associated with stress protection. Our results strengthen the hypothesis that isoprene biosynthesis is related to metabolic changes at the gene and protein levels involved in the activation of general stress defensive mechanisms of plants.

7.
Fungal Genet Biol ; 165: 103779, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36706978

RESUMO

Sesquiterpenes (STs) are secondary metabolites, which mediate biotic interactions between different organisms. Predicting the species-specific ST repertoires can contribute to deciphering the language of communication between organisms of the same or different species. High biochemical plasticity and catalytic promiscuity of sesquiterpene synthases (STSs), however, challenge the homology-based prediction of the STS functions. Using integrated analyses of genomic, transcriptomic, volatilomic, and metabolomic data, we predict product profiles for 116 out of 146 putative STS genes identified in the genomes of 30 fungal species from different trophic groups. Our prediction method is based on the observation that STSs encoded by genes closely related phylogenetically are likely to share the initial enzymatic reactions of the ST biosynthesis pathways and, therefore, produce STs via the same reaction route. The classification by reaction routes allows to assign STs known to be emitted by a particular species to the putative STS genes from this species. Gene expression information helps to further specify these ST-to-STS assignments. Validation of the computational predictions of the STS functions using both in silico and experimental approaches shows that integrated multiomic analyses are able to correctly link cyclic STs of non-cadalane type to genes. In the process of the experimental validation, we characterized catalytic properties of several putative STS genes from the mycorrhizal fungus Laccaria bicolor. We show that the STSs encoded by the L.bicolor mycorrhiza-induced genes emit either nerolidol or α-cuprenene and α-cuparene, and discuss the possible roles of these STs in the mycorrhiza formation.


Assuntos
Micorrizas , Sesquiterpenos , Multiômica , Sesquiterpenos/metabolismo , Genes Fúngicos , Micorrizas/genética , Perfilação da Expressão Gênica
8.
Front Plant Sci ; 14: 1309747, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173923

RESUMO

Plants are central to complex networks of multitrophic interactions. Increasing evidence suggests that beneficial microorganisms (BMs) may be used as plant biostimulants and pest biocontrol agents. We investigated whether tomato (Solanum lycopersicum) plants are thoroughly colonized by the endophytic and entomopathogenic fungus Beauveria bassiana, and how such colonization affects physiological parameters and the phenotype of plants grown under unstressed conditions or exposed to the pathogenic fungus Botrytis cinerea. As a positive control, a strain of the well-known biocontrol agent and growth inducer Trichoderma afroharzianum was used. As multitrophic interactions are often driven by (or have consequences on) volatile organic compounds (VOCs) released by plants constitutively or after induction by abiotic or biotic stresses, VOC emissions were also studied. Both B. bassiana and T. afroharzianum induced a significant but transient (one to two-day-long) reduction of stomatal conductance, which may indicate rapid activation of defensive (rejection) responses, but also limited photosynthesis. At later stages, our results demonstrated a successful and complete plant colonization by B. bassiana, which induced higher photosynthesis and lower respiration rates, improved growth of roots, stems, leaves, earlier flowering, higher number of fruits and yield in tomato plants. Beauveria bassiana also helped tomato plants fight B. cinerea, whose symptoms in leaves were almost entirely relieved with respect to control plants. Less VOCs were emitted when plants were colonized by B. bassiana or infected by B. cinerea, alone or in combination, suggesting no activation of VOC-dependent defensive mechanisms in response to both fungi.

9.
Front Microbiol ; 13: 923515, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875540

RESUMO

Pseudomonas sp. SCA7, characterized in this study, was isolated from roots of the bread wheat Triticum aestivum. Sequencing and annotation of the complete SCA7 genome revealed that it represents a potential new Pseudomonas sp. with a remarkable repertoire of plant beneficial functions. In vitro and in planta experiments with the reference dicot plant A. thaliana and the original monocot host T. aestivum were conducted to identify the functional properties of SCA7. The isolate was able to colonize roots, modify root architecture, and promote growth in A. thaliana. Moreover, the isolate increased plant fresh weight in T. aestivum under unchallenged conditions. Gene expression analysis of SCA7-inoculated A. thaliana indicated a role of SCA7 in nutrient uptake and priming of plants. Moreover, confrontational assays of SCA7 with fungal and bacterial plant pathogens revealed growth restriction of the pathogens by SCA7 in direct as well as indirect contact. The latter indicated involvement of microbial volatile organic compounds (mVOCs) in this interaction. Gas chromatography-mass spectrometry (GC-MS) analyses revealed 1-undecene as the major mVOC, and octanal and 1,4-undecadiene as minor abundant compounds in the emission pattern of SCA7. Additionally, SCA7 enhanced resistance of A. thaliana against infection with the plant pathogen Pseudomonas syringae pv. tomato DC3000. In line with these results, SA- and JA/ET-related gene expression in A. thaliana during infection with Pst DC3000 was upregulated upon treatment with SCA7, indicating the ability of SCA7 to induce systemic resistance. The thorough characterization of the novel Pseudomonas sp. SCA7 showed a remarkable genomic and functional potential of plant beneficial traits, rendering it a promising candidate for application as a biocontrol or a biostimulation agent.

10.
Metabolites ; 12(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35208168

RESUMO

Plants are continuously interacting with other organisms to optimize their performance in a changing environment. Mycorrhization is known to affect the plant growth and nutrient status, but it also can lead to adjusted plant defense and alter interactions with other trophic levels. Here, we studied the effect of Laccaria bicolor-mycorrhization on the poplar (Populus x canescens) metabolome and volatilome on trees with and without a poplar leaf beetle (Chrysomela populi) infestation. We analyzed the leaf and root metabolomes employing liquid chromatography-mass spectrometry, and the leaf volatilome employing headspace sorptive extraction combined with gas-chromatography-mass spectrometry. Mycorrhization caused distinct metabolic adjustments in roots, young/infested leaves and old/not directly infested leaves. Mycorrhization adjusted the lipid composition, the abundance of peptides and, especially upon herbivory, the level of various phenolic compounds. The greatest change in leaf volatile organic compound (VOC) emissions occurred four to eight days following the beetle infestation. Together, these results prove that mycorrhization affects the whole plant metabolome and may influence poplar aboveground interactions. The herbivores and the mycorrhizal fungi interact with each other indirectly through a common host plant, a result that emphasizes the importance of community approach in chemical ecology.

11.
Plant Cell Environ ; 45(2): 362-377, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34873714

RESUMO

Condensed tannins (CTs, proanthocyanidins) are widespread polymeric flavan-3-ols known for their ability to bind proteins. In poplar (Populus spp.), leaf condensed tannins are induced by both biotic and abiotic stresses, suggesting diverse biological functions. Here we demonstrate the ability of CTs to function as physiological antioxidants, preventing oxidative and cellular damage in response to drought and UV-B irradiation. Chlorophyll fluorescence was used to monitor photosystem II performance, and both hydrogen peroxide and malondialdehyde content was assayed as a measure of oxidative damage. Transgenic MYB-overexpressing poplar (Populus tremula × P. tremuloides) with high CT content showed reduced photosystem damage and lower hydrogen peroxide and malondialdehyde content after drought and UV-B stress. This antioxidant effect of CT was observed using two different poplar MYB CT regulators, in multiple independent lines and different genetic backgrounds. Additionally, low-CT MYB134-RNAi transgenic poplars showed enhanced susceptibility to drought-induced oxidative stress. UV-B radiation had different impacts than drought on chlorophyll fluorescence, but all high-CT poplar lines displayed reduced sensitivity to both stresses. Our data indicate that CTs are significant defences against oxidative stress. The broad distribution of CTs in forest systems that are exposed to diverse abiotic stresses suggests that these compounds have wider functional roles than previously realized.


Assuntos
Antioxidantes/farmacologia , Secas , Estresse Oxidativo , Populus/efeitos dos fármacos , Proantocianidinas/farmacologia , Raios Ultravioleta/efeitos adversos , Populus/fisiologia , Populus/efeitos da radiação
12.
New Phytol ; 234(3): 961-974, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34716577

RESUMO

Isoprene, a major biogenic volatile hydrocarbon of climate-relevance, indisputably mitigates abiotic stresses in emitting plants. However functional relevance of constitutive isoprene emission in unstressed plants remains contested. Isoprene and cytokinins (CKs) are synthesized from a common substrate and pathway in chloroplasts. It was postulated that isoprene emission may affect CK-metabolism. Using transgenic isoprene-emitting (IE) Arabidopsis and isoprene nonemitting (NE) RNA-interference grey poplars (paired with respective NE and IE genotypes), the life of individual IE and NE leaves from emergence to abscission was followed under stress-free conditions. We monitored plant growth rate, aboveground developmental phenotype, modelled leaf photosynthetic energy status, quantified the abundance of leaf CKs, analysed Arabidopsis and poplar leaf transcriptomes by RNA-sequencing in presence and absence of isoprene during leaf senescence. Isoprene emission by unstressed leaves enhanced the abundance of CKs (isopentenyl adenine and its precursor) by > 200%, significantly upregulated genes coding for CK-synthesis, CK-signalling and CK-degradation, hastened plant development, increased chloroplast metabolic rate, altered photosynthetic energy status, induced early leaf senescence in both Arabidopsis and poplar. IE leaves senesced sooner even in decapitated poplars where source-sink relationships and hormone homeostasis were perturbed. Constitutive isoprene emission significantly accelerates CK-led leaf and organismal development and induces early senescence independent of growth constraints. Isoprene emission provides an early-riser evolutionary advantage and shortens lifecycle duration to assist rapid diversification in unstressed emitters.


Assuntos
Hemiterpenos , Pentanos , Butadienos/metabolismo , Butadienos/farmacologia , Citocininas/metabolismo , Hemiterpenos/metabolismo , Pentanos/metabolismo , Folhas de Planta/metabolismo
13.
J Exp Bot ; 73(2): 615-630, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34849759

RESUMO

Plants activate biochemical responses to combat stress. (Hemi-)biotrophic pathogens are fended off by systemic acquired resistance (SAR), a primed state allowing plants to respond faster and more strongly upon subsequent infection. Here, we show that SAR-like defences in barley (Hordeum vulgare) are propagated between neighbouring plants, which respond with enhanced resistance to the volatile cues from infected senders. The emissions of the sender plants contained 15 volatile organic compounds (VOCs) associated with infection. Two of these, ß-ionone and nonanal, elicited resistance upon plant exposure. Whole-genome transcriptomics analysis confirmed that interplant propagation of defence in barley is established as a form of priming. Although gene expression changes were more pronounced after challenge infection of the receiver plants with Blumeria graminis f. sp. hordei, differential gene expression in response to the volatile cues of the sender plants included an induction of HISTONE DEACETYLASE 2 (HvHDA2) and priming of TETRATRICOPEPTIDE REPEAT-LIKE superfamily protein (HvTPL). Because HvHDA2 and HvTPL transcript accumulation was also enhanced by exposure of barley to ß-ionone and nonanal, our data identify both genes as possible defence/priming markers in barley. Our results suggest that VOCs and plant-plant interactions are relevant for possible crop protection strategies priming defence responses in barley.


Assuntos
Hordeum , Aldeídos , Hordeum/genética , Norisoprenoides , Doenças das Plantas , Proteínas de Plantas/genética , Plantas
14.
New Phytol ; 232(2): 818-834, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34240433

RESUMO

Climate change is increasing insect pressure and forcing plants to adapt. Although chemotypic differentiation and phenotypic plasticity in spatially separated tree populations are known for decades, understanding their importance in herbivory resistance across forests remains challenging. We studied four oak forest stands in Germany using nontarget metabolomics, elemental analysis, and chemometrics and mapped the leaf metabolome of herbivore-resistant (T-) and herbivore-susceptible (S-) European oaks (Quercus robur) to Tortrix viridana, an oak pest that causes severe forest defoliation. Among the detected metabolites, we identified reliable metabolic biomarkers to distinguish S- and T-oak trees. Chemotypic differentiation resulted in metabolic shifts of primary and secondary leaf metabolism. Across forests, T-oaks allocate resources towards constitutive chemical defense enriched of polyphenolic compounds, e.g. the flavonoids kaempferol, kaempferol and quercetin glucosides, while S-oaks towards growth-promoting substances such as carbohydrates and amino-acid derivatives. This extensive work across natural forests shows that oaks' resistance and susceptibility to herbivory are linked to growth-defense trade-offs of leaf metabolism. The discovery of biomarkers and the developed predictive model pave the way to understand Quercus robur's susceptibility to herbivore attack and to support forest management, contributing to the preservation of oak forests in Europe.


Assuntos
Quercus , Animais , Ecótipo , Florestas , Herbivoria , Árvores
15.
Commun Biol ; 4(1): 673, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083721

RESUMO

Fungi produce a wide variety of volatile organic compounds (VOCs), which play central roles in the initiation and regulation of fungal interactions. Here we introduce a global overview of fungal VOC patterns and chemical diversity across phylogenetic clades and trophic modes. The analysis is based on measurements of comprehensive VOC profiles of forty-three fungal species. Our data show that the VOC patterns can describe the phyla and the trophic mode of fungi. We show different levels of phenotypic integration (PI) for different chemical classes of VOCs within distinct functional guilds. Further computational analyses reveal that distinct VOC patterns can predict trophic modes, (non)symbiotic lifestyle, substrate-use and host-type of fungi. Thus, depending on trophic mode, either individual VOCs or more complex VOC patterns (i.e., chemical communication displays) may be ecologically important. Present results stress the ecological importance of VOCs and serve as prerequisite for more comprehensive VOCs-involving ecological studies.


Assuntos
Fungos/metabolismo , Interações Hospedeiro-Patógeno , Simbiose , Compostos Orgânicos Voláteis/análise , Fungos/classificação , Fungos/genética , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas/métodos , Filogenia , Raízes de Plantas/microbiologia , Brotos de Planta/microbiologia , Especificidade da Espécie , Compostos Orgânicos Voláteis/química
16.
Plant Physiol ; 187(1): 336-360, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34003928

RESUMO

Nitric oxide (NO) is a signaling molecule with multiple regulatory functions in plant physiology and stress response. In addition to direct effects on transcriptional machinery, NO executes its signaling function via epigenetic mechanisms. We report that light intensity-dependent changes in NO correspond to changes in global histone acetylation (H3, H3K9, and H3K9/K14) in Arabidopsis (Arabidopsis thaliana) wild-type leaves, and that this relationship depends on S-nitrosoglutathione reductase and histone deacetylase 6 (HDA6). The activity of HDA6 was sensitive to NO, demonstrating that NO participates in regulation of histone acetylation. Chromatin immunoprecipitation sequencing and RNA-seq analyses revealed that NO participates in the metabolic switch from growth and development to stress response. This coordinating function of NO might be particularly important in plant ability to adapt to a changing environment, and is therefore a promising foundation for mitigating the negative effects of climate change on plant productivity.


Assuntos
Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Código das Histonas , Óxido Nítrico/farmacologia , Processamento de Proteína Pós-Traducional , Acetilação , Arabidopsis/crescimento & desenvolvimento , Expressão Gênica
17.
Oecologia ; 197(4): 903-919, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33880635

RESUMO

Climate change is increasing the frequency and intensity of warming and drought periods around the globe, currently representing a threat to many plant species. Understanding the resistance and resilience of plants to climate change is, therefore, urgently needed. As date palm (Phoenix dactylifera) evolved adaptation mechanisms to a xeric environment and can tolerate large diurnal and seasonal temperature fluctuations, we studied the protein expression changes in leaves, volatile organic compound emissions, and photosynthesis in response to variable growth temperatures and soil water deprivation. Plants were grown under controlled environmental conditions of simulated Saudi Arabian summer and winter climates challenged with drought stress. We show that date palm is able to counteract the harsh conditions of the Arabian Peninsula by adjusting the abundances of proteins related to the photosynthetic machinery, abiotic stress and secondary metabolism. Under summer climate and water deprivation, these adjustments included efficient protein expression response mediated by heat shock proteins and the antioxidant system to counteract reactive oxygen species formation. Proteins related to secondary metabolism were downregulated, except for the P. dactylifera isoprene synthase (PdIspS), which was strongly upregulated in response to summer climate and drought. This study reports, for the first time, the identification and functional characterization of the gene encoding for PdIspS, allowing future analysis of isoprene functions in date palm under extreme environments. Overall, the current study shows that reprogramming of the leaf protein profiles confers the date palm heat- and drought tolerance. We conclude that the protein plasticity of date palm is an important mechanism of molecular adaptation to environmental fluctuations.


Assuntos
Phoeniceae , Secas , Fotossíntese , Folhas de Planta , Arábia Saudita , Estresse Fisiológico
19.
Plant Cell Environ ; 44(4): 1151-1164, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33522606

RESUMO

Isoprene and other terpenoids are important biogenic volatile organic compounds in terms of atmospheric chemistry. Isoprene can aid plant performance under abiotic stresses, but the fundamental biological reasons for the high emissions are not completely understood. Here, we provide evidence of a previously unrecognized ecological function for isoprene and for the sesquiterpene, ß-caryophyllene. We show that isoprene and ß-caryophyllene act as core components of plant signalling networks, inducing resistance against microbial pathogens in neighbouring plants. We challenged Arabidopsis thaliana with Pseudomonas syringae, after exposure to pure volatile terpenoids or to volatile emissions of transformed poplar or Arabidopsis plants. The data suggest that isoprene induces a defence response in receiver plants that is similar to that elicited by monoterpenes and depended on salicylic acid (SA) signalling. In contrast, the sesquiterpene, ß-caryophyllene, induced resistance via jasmonic acid (JA)-signalling. The experiments in an open environment show that natural biological emissions are enough to induce resistance in neighbouring Arabidopsis. Our results show that both isoprene and ß-caryophyllene function as allelochemical components in complex plant signalling networks. Knowledge of this system may be used to boost plant immunity against microbial pathogens in various crop management schemes.


Assuntos
Butadienos/farmacologia , Resistência à Doença/efeitos dos fármacos , Hemiterpenos/farmacologia , Doenças das Plantas/imunologia , Sesquiterpenos Policíclicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/imunologia , Arabidopsis/microbiologia , Doenças das Plantas/microbiologia , Pseudomonas syringae , Compostos Orgânicos Voláteis/metabolismo
20.
Oecologia ; 197(4): 885-902, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33420520

RESUMO

Plant isoprene emissions are known to contribute to abiotic stress tolerance, especially during episodes of high temperature and drought, and during cellular oxidative stress. Recent studies have shown that genetic transformations to add or remove isoprene emissions cause a cascade of cellular modifications that include known signaling pathways, and interact to remodel adaptive growth-defense tradeoffs. The most compelling evidence for isoprene signaling is found in the shikimate and phenylpropanoid pathways, which produce salicylic acid, alkaloids, tannins, anthocyanins, flavonols and other flavonoids; all of which have roles in stress tolerance and plant defense. Isoprene also influences key gene expression patterns in the terpenoid biosynthetic pathways, and the jasmonic acid, gibberellic acid and cytokinin signaling networks that have important roles in controlling inducible defense responses and influencing plant growth and development, particularly following defoliation. In this synthesis paper, using past studies of transgenic poplar, tobacco and Arabidopsis, we present the evidence for isoprene acting as a metabolite that coordinates aspects of cellular signaling, resulting in enhanced chemical defense during periods of climate stress, while minimizing costs to growth. This perspective represents a major shift in our thinking away from direct effects of isoprene, for example, by changing membrane properties or quenching ROS, to indirect effects, through changes in gene expression and protein abundances. Recognition of isoprene's role in the growth-defense tradeoff provides new perspectives on evolution of the trait, its contribution to plant adaptation and resilience, and the ecological niches in which it is most effective.


Assuntos
Antocianinas , Hemiterpenos , Butadienos , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...